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Here we are primarily concerned with the effect of a (normally oriented) temperature gradient on
an equilibrium interface separating coexisting phases in a symmetric binary system below its critical
temperature. In such a system, the temperature couples “weakly” to the order parameter and does
not favor either of the potentially coexisting bulk phases. Nomnetheless, for a large system, there
can be a dramatic effect and a failure of a linear response owing to the breaking of translational
invariance by the spatially varying temperature. Two types of boundary conditions on the order
parameter, natural and “topological,” are used. The structure of the effective free energy, noncon-
served dynamics, and the Langevin equation for the collective coordinate specifying the interface
position are analyzed.
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I. INTRODUCTION

Thermocapillarity effects, in which the interfacial
properties of two phase systems provide the dominant
driving forces and control flows and motion, are of in-
terest in a variety of areas [1]. These include two-phase
flows, droplet migration, and a variety of other phenom-
ena in a microgravity environment (see, e.g., Ref. [2]),
and, for example, convection in which the Marangoni ef-
fect plays a determining role (see, e.g., Ref. [3] and ref-
erences cited therein). To gain a deeper understanding
of these and other phenomena, it is of interest to con-
sider the effect of a temperature gradient on a two-phase
interface within a coarse-grained description.

In this paper we study static and dynamic aspects of
the response of the interface separating two coexisting
phases in a symmetric binary system below its critical
temperature to an imposed temperature gradient. In
such a model the spatially varying temperature couples
“weakly” to the order parameter and, in any region, does
not favor one or the other of the potentially coexisting
phases. Nonetheless, the effect of the perturbation can be
strong because of the breaking of translational invariance.
In the dynamics considerations, we restrict ourselves here
to the case of a nonconserved order parameter.

While the model we will consider is just a first step
in dealing with the fluid systems mentioned above, this
work does have potential relevance to the understanding
of transport phenomena mediated by solitons in systems
with nonuniform temperature. The reason for this is
that, as we will see below, a temperature gradient drives
the interface out of equilibrium thus modifying the dy-
namics of the soliton. Hence this mechanism may have
implications in charge transport, and our analysis may be
of interest in charge-density wave systems [4] and quasi-
one-dimensional organic polymers [5] and other meso-
scopic condensed matter systems in which solitons play
an important role [6]. In particular, our analysis applies
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directly to a coarse-grained description of charge density
wave excitations in quasi-one-dimensional chains [7].

To deal properly with fluid phenomena, for example
the migration of a droplet of one phase in the background
of its coexisting partner, the dynamics treated here must
be generalized to include order parameter conservation as
well as flow. This is beyond the present scope. Solidifi-
cation phenomena, on the other hand, require a different
coupling of the temperature variable to the order param-
eter than will be considered here.

We approach the question of the effect of nonuniform
temperature from both analytic and numerical direc-
tions. The analysis presented here essentially addresses
the nature of the free energy of a two-phase interface (or
kink) in a temperature gradient. Accordingly, the dy-
namics addressed here are restricted to a nonconserved
order parameter.

We find interesting features in the behavior. In partic-
ular, a temperature gradient couples to the the so-called
“translation” mode of the interface which is then only
weakly clamped by the finite size of the system. We find
that a perturbative analysis has a vanishing domain of
applicability in a large system, i.e., linear response fails.
The structure of the effective free energy as a function
of the collective coordinate describing the interface po-
sition is sensitive to the boundary conditions, but kinks
not too near the boundaries are seen to move with con-
stant velocity linear in the gradient. Kink solutions in
the simplest situations are commonly represented as so-
lutions of mechanical equations describing a ball rolling
down a hill. In the presence of a temperature gradient,
we show that a mechanical analog still holds, but now
the ball rolls with friction.

The remainder of this paper is organized as follows.
In Sec. II the statics of a nonconserved order parame-
ter in a temperature gradient are considered, while in
Sec. III effective Langevin dynamics for the collective co-
ordinate describing the interface position are derived. A
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comparison with a full numerical analysis using relax-
ational (model A in the lexicon of Ref. [8]) dynamics is
included. Section IV is reserved for concluding remarks.

II. STATICS

We consider a coarse-grained description of system al-
lowing a transition from a single phase to a state of two-
phase coexistence with a scalar order parameter, ¢. The
temperature is allowed to vary slowly along one partic-
ular direction (chosen to be z) inside the sample, which
is confined in a box 0 < z < L. We consider configura-
tions translationally invariant in directions perpendicular
to the gradient. For a configuration ¢(z) the free energy
per unit “area” is taken to be

F:A%x%(ﬁ?)aéﬁ@&ﬁﬂe¢@ﬂ

(2.1)

In such a model the function r?(z) can be taken to specify
the local temperature difference from a reference (criti-
cal) temperature. We take the temperature to be slowly
varying and parametrize

Ar
r(z) =ro (1 + :Of:v) .

This parametrization will prove to be convenient for the
analysis to follow. Furthermore, for Ar/ro < 1, which
will be the case of interest, the temperature varies al-
most linearly with distance, with z = 0 being the hotter
and £ = L the colder ends of the sample. While our
explicit calculations and simulations are for the specific
model described above, general features of the results are
not expected to depend on the details of the free-energy
functional. Note that r(z) > 0 throughout the sample,
keeping the system below critical everywhere, and that
for the particular coupling in Eq. (2.1) neither of the
two potentially coexisting phases is locally favored. The
coupling of the temperature to the order parameter is
appropriate to phase separation and does not describe
solidification.

Equilibrium configurations are extrema of the free en-
ergy functional (2.1), which leads to the search for solu-
tions to the following nonlinear differential equation:

‘92891(2"’) —r2(z)p(z) + ApP(z) = 0 .

Notice that with the particular choice (2.2), ¢(z) =
+7(z)/v/Xis an exact solution of (2.3) corresponding to a
particular local equilibrium configuration. It proves con-
venient to remove the local equilibrium variation and to
introduce a nonlinear change of variables

= r(a:) zZ\ZT
B@) =~ =n(=())

(2.2)

(2.3)

(2.4)

and the dimensionless parameter

_ Ar
with h <« 1. (Variable changes of this type are frequently
used within the context of nonlinear differential equations
and discussed in Ref. [9].) This parameter measures the
strength of the temperature gradient. The dependence
of z(z) is determined by requiring that the coefficient of
the d?7/dz? in the resulting differential equation for 7(z)
be unity. This requirement yields the simple relation

dz(z)
e = r(z). (2.6)

We furthermore impose the boundary condition z(0) = 0
thus obtaining the new dimensionless variable
h 2
z(z) = roz + E(rom) (2.7)
measuring the “distance” from the hot wall. With the
assumption that Ar/rq < 1 and hence h,hLro < 1, the
differential equation for 7(z) in terms of the new dimen-
sionless variable z becomes
ii+3hn+n—n>=0 (2.8)
where dots stand for derivatives with respect to z. For
h = 0 there are well known “kink” solutions to this equa-
tion (see e.g., Ref. [10]).

The advantage of parametrizing r(z) as in (2.2) and of
the change of variables (2.4) becomes clear. Whereas in
the original differential equation (2.3) the  dependence
of r(z) broke explicit translational invariance, the differ-
ential equation for n(z) is manifestly translational invari-
ant in the variable z. Furthermore, Eq. (2.8) provides a
very appealing physical interpretation: 7(z) describes the
position of a particle moving at “time” z in a potential
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damped by velocity-dependent friction proportional to h.
The present work involves analysis of Eq. (2.8).

Before searching for solutions to the differential equa-
tion, we must specify boundary conditions. Since we are
interested in the behavior of interfaces, relevant bound-
ary conditions are those compatible with solutions that
have one node (the position of the interface). We will
focus on two sets of boundary conditions. The first, type
I, corresponds to natural boundary conditions:

dé(z) d(z)

dz |°=° ; dz

(2.9)

type I: = =0. (2.10)

c=L

The corresponding conditions on 7(z) at z = 0 and z =
l = z(z = L) are n(z = 0,1) = —hn(z = 0,1). Note we
always will consider hLro << 1.

In the boundary conditions of type II, the order param-
eter is fixed at the “local equilibrium” values, namely,

r(L)

twdh¢@=¥ﬂg'ﬂm=i¢x

\/X ’

corresponding to n(0) = F1; p(l) = £1.

(2.11)
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A. Boundary conditions I
1. Perturbative solutions

For these boundary conditions there is surely a solu-
tion in which the order parameter remains in one phase,
with the || ~ 1. We refer to this as the local equilib-
rium solution, which will be a global minimum of the
free energy functional. For small kA a perturbative solu-
tion is easily found with n(z) = —1 + (z) and é(z) =
e~ 3h% [Acosh(Wz) + Bsinh(Wz)], with A, B chosen to
2+ Sh2.

Having established the configuration with the lowest
free energy for the case of boundary conditions (I), we
now concentrate on finding a solution with an interface.
This solution must necessarily have one node, and for
very small h we expect that its behavior away from the
node will have |n| ~ 1.

For h = 0, the solution 79(z) may be found by quadra-
tures in terms of the elliptic sine function [11,12]. Since
the problem of an interface or “kink” in a finite system is
not standard, we present some useful properties of the so-
lution to the unperturbed problem in Appendix B. These
properties are important in obtaining a perturbative so-
lution in the presence of the temperature gradient. For
h # 0 there are no exact solutions to the differential equa-
tion, which in its original form (2.3) may be recognized
(for h <« 1) as a Painlevé transcendental without an exact
solution [9]. Although this is a formal property, one of its
main consequences is that the solution is nonsingular in
a finite interval [9] (the only possible singularities are at
infinity), and this suggests that a perturbative approach
may be feasible, namely, letting

satisfy the boundary conditions and W =

n(z) = no(z) + hna(z) +--- . (2.12)
This expansion will allow us to study the linear response
of the interface profile to the temperature gradient.

We now need to find the first order correction 7;. This
function obeys the linearized equation

i1 + M — 3ngn = —31jo . (2.13)

This shows that the temperature gradient couples to the
“translation mode” of the system, §; = 7jp, which satisfies
the homogeneous equation in Eq. (2.13). The existence
of this mode yielding zero eigenvalue for the fluctuation
operator (£ = d%/dz?+1—3n?) is a direct result of trans-
lational invariance (see, e.g., Ref. [13]). This can be seen
as follows: in the absence of the temperature gradient,
the free energy functional is translationally invariant (in
the infinite volume limit). A displacement of the position
of the interface n(z) — n(z + a) = n(z) + adn/dz (with a
a constant) does not cost free energy. Thus dn(z)/dz is
an eigenvector of the small fluctuation operator £ with
zero eigenvalue [10]. Were it not for the fact that the
domain is finite, such a perturbative analysis could not
be carried out. In the present case a solution can be
constructed using elementary methods. A particular so-
lution of Eq. (2.13) is obtained in a standard manner

from the two linearly independent solutions of the ho-
mogeneous equation. As mentioned above, translational
invariance guarantees that §; is a solution of the homoge-
neous equation. From this solution we can construct an-
other linearly independent solution of the homogeneous
equation, d2, with unit Wronskian. From these two so-
lutions the particular solution can be obtained; however,
this solution will not obey the proper boundary condi-
tions. The solution that we seek is found by adding
a solution of the homogeneous equation to the partic-
ular solution fixing the coeflicients to enforce the bound-
ary conditions. The steps leading to the final form of
the solution that obeys the proper boundary conditions
are included in Appendix A. As one might expect, near
Z =z —1/2 ~ 0 the solution is of the form

dno(Z)

—+...z7)0(z+ha1)+... s

n(Z) =no(Z) + hoy o7

(2.14)

where the constant a; (see Appendix A) is determined
by the boundary conditions, and the terms indicated by
dots vanish at Z = 0. Clearly the position of the interface
has been shifted to Z = —hay [i.e., z = (I/2) — hay]; it
remains to calculate a;. A perturbative analysis will be
possible as long as ha; is sufficiently small.

The explicit evaluation of 7, is, in general, complicated
by the unwieldy elliptic functions and elliptic integrals.
However, it is simplified in the physically relevant large
volume limit. Some background is provided in Appendix
B. Since we want only one node of the order parameter
profile, this requires that the half-period of the elliptic
function that corresponds to the unperturbed solution
(B1) becomes very large in the large volume limit. After
some tedious but straightforward algebra we find that

~ V2 V2l
R e (2.15)

This is one of the main results of this paper. Before
proceeding it is useful to consider the perturbative cor-
rection in the case of small amplitudes. That is, one may
linearize Eq. (2.8) near n =~ 0, discarding the cubic term.
Although in this approximation the differential equation
describes an (underdamped) harmonic oscillator, the lin-
ear response field 71(Z) can be compared to the exact
solution. Requiring that there be only one node in the
interval requires that [ = 7 [the asymptotic limit of the
elliptic integral K (m); see Appendix B]. The first order
correction 7; agrees with the first order term (in h) in
the expansion of the exact solution with boundary con-
ditions of type I. The amplitude of the perturbation is of
order hl, and the perturbative analysis is reliable when-
ever hl < 1, corresponding physically to the gradient
being small on the scale of the correlation length. Ul-
timately secular terms destroy the approximation as hl
becomes too large. The situation is much worse in the
nonlinear case to which we now return.

The result contained in Eq. (2.15) is important: the co-
efficient that determines the translation of the interface
becomes exponentially large in the large volume limit,
signaling the breakdown of perturbation theory and lin-



5456 BOYANOVSKY, JASNOW, LLAMBIAS, AND TAKAKURA 51

ear response analysis. The relevant combination can be
seen from Eq. (2.14) to be ha;. Furthermore, the sign
of the coeflicient shows that the interface is shifted dra-
matically toward the colder end. This suggests that the
extremum found does not correspond to a local mini-
mum of the free energy functional. However, the result is
physically reasonable. The temperature gradient breaks
translational invariance; this is the reason that it couples
to the “zero mode,” i.e., the direction in function space
associated with translational displacement. In the very
large volume limit the translation mode is only weakly
clamped by the boundaries, therefore its coupling to the
temperature gradient results in a large shift of the inter-
face under the perturbation.

2. Numerical results

Since exact analytical solutions are not generally avail-
able and perturbation theory leads to an exponentially
divergent linear response to the temperature gradient,
we obtained numerically the profiles for the order pa-
rameter using a shooting method to solve the differential
equation with type I (natural) boundary conditions given
in Eq. (2.10).

Figure 1 shows the 7(2) vs z for h = 102 for a system
of size | =~ 40. We clearly see that the perturbed interface
is established near the cold end of the sample, forming
a boundary layer of about two correlation lengths. (In
dimensionless units, the correlation length is £ =~ \/5)
From the numerical standpoint and the interpretation
of 7(z) as the trajectory of a particle rolling down the
potential (2.9) under constant friction h < 1, the reason
that the extremum configuration has an interface close
to the cold end in the large volume limit [ > £ is clear.

The initial condition for “shooting,” that is, the value
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FIG. 1. Solid line: n(z)vsz; h = 1073 [ ~ 40
with boundary conditions (I), showing the extremum solu-
tion with the interface near the cold boundary. Dashed line:
n(z) vs z; h = 1073, | ~ 25 with boundary conditions (II),
showing the extremum (global equilibrium) solution with the
interface near the hot boundary.

of 77(0) for the boundary condition 7(z)|,=¢ = —hn(0),
must be such that n(0) < —1; 7(0) > 0. In this manner,
the particle first has to climb up the potential hill to n =
—1 and reach that point with an extremely small velocity,
remaining for a long time around that point and slowly
falling down on the other side of the potential maximum.
It then increases its velocity, passes through n = 0, and
climbs up the potential hill toward n = +1. Because
of friction, the velocity reaches zero before reaching the
top, and the particle turns back; the integration stops
when the boundary condition is obeyed again, now with
negative velocity. On the other hand, if the integration
were begun with n(0) > —1, for a large volume there
would only be solutions with many nodes corresponding
to a higher free energy. A solution with only one node and
1(0) > —1 will only appear for small volumes, compatible
with the solution found in the linearized region near n =
0.

Thus in the large volume limit, the particle must be-
gin with 7(0) < —1 (the “antikink” solution will begin
with 7n(0) > 1) with a small upward velocity given by
the boundary condition and will remain near the local
equilibrium region 7 & —1 for most of the time, mak-
ing a rather quick transition near the cold end 2z =~ I.
However unlike in the topological “kink” case, the solu-
tion with one interface is in the same sector in functional
space as the local equilibrium solution in that it has the
same boundary conditions (of type I). But clearly the
local equilibrium solution corresponds to the lowest free
energy among the functions with such boundary condi-
tions. The solutions to the differential equations (2.3)
and (2.8) are indeed extrema of the free energy func-
tional; the solution with one interface cannot be a local
maximum because adding “wiggles” in the configuration
will increase the free energy via the derivative terms.

If the configuration were a local minimum with a free
energy higher than the local equilibrium solution, then
there must be a local maximum that separates the two
solutions. However, there is no evidence of another solu-
tion with the same boundary conditions. This reasoning
leads us to conjecture that the solution with the inter-
face is most likely a saddle point of the free energy func-
tional. To prove this conjecture, we would have to study
the spectrum of fluctuations around this solution with an
interface and identify a particular direction in function
space for which an eigenvalue is negative. In the present
case this is an extremely difficult problem complicated
by the boundary conditions on the solution.

In the case of zero temperature gradient and in the
large volume limit, because of translational invariance, a
shift of the interface costs negligible free energy (when
the interface is far from the boundaries). With the tem-
perature gradient, translational invariance is broken and
there is a profile which extremizes the free energy. Thus
our strategy is to propose a good trial “kinklike” function
parametrized by the position of the interface z. and to
compute the free energy as a function of this parameter.
This is equivalent to treating the position of the inter-
face as a “collective coordinate,” which is appropriate in
the case of kinks and identifies the coordinate, z., as the
translational degree of freedom [13-15].
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We have found for a wide range of parameters h and [
that the numerical solution to the differential equation
(2.8) is very well described by the interpolating function

n(z,20) ~ (1 + %) tanh [z:/;c] .

Here z. determines the position of the interface. The
accuracy of this fitting function is better than 1% in most
of the volume, with slightly larger departures of about
2 — 3% near the boundaries of the sample, but extremely
accurate near the interface. In terms of 7(z; z.) and the
variable z, the free energy as a function of z. is given by
[up to linear order in h consistently with our expansion
of the differential equation (2.8)]

ri= (§) [eemats ()

1
—én%m%)+3#uua}

(2.16)

[P ze) — (0520 (217)
It is clear from this expression that in terms of the field
1 and the variable z, the breakdown of translational in-
variance is in the metric (and for large enough system,
weakly from the boundaries).

Figure 2 shows F|z.] vs z. for h = 1073, | ~ 40 ob-
tained by using (2.16); these values of the parameters are
the same as those for Fig. 1 (type I boundary conditions).
We see that F[z;] has a mazimum at 2. = zg., ~ 36
whereas the “shooting” numerical integration gives the
value of the position of the interface (i.e., the node, = 0)
at z. = 35.8, giving confidence that the full numerical ap-
proach yields a solution corresponding to this maximum.
Except within a few correlation lengths of the boundaries,
we find that F[z.] varies approximately linearly with the

055 : .
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FIG. 2. Flz.]vsz. for h = 1073, 1 ~ 40 with the

parametrization (2.16).
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interface position z. with a slope
dFlz;] (r} N
B P (T 2V2h + O(R?) + - -
= 3hoo + O(h®) + - --, (2.18)

where 0o = r321/2/3) is recognized as the interfacial free
energy (surface tension) for an interface when h = 0. We
will compare this to our dynamical simulations described
below.

These and other numerical consistency checks between
the trial function approach and the full nonlinear solution
lead us to conclude that the configuration that extrem-
izes the free energy with one interface (node) corresponds
to a mazimum in the functional direction corresponding
to translations, and is thus interpreted as a saddle point
configuration. This saddle already exists for the unper-
turbed case (h = 0) under the boundary conditions of
type I, and the situation for small h represents a smooth
deformation.

If this interpretation is correct, there emerges the ques-
tion as to the identification of the thermodynamically
different states separated by this saddle. These states
should be global minima of the free energy functional,
because if one were a global and the other a local mini-
mum, there should then be additional solutions of the dif-
ferential equation with different free energies. However,
as mentioned above, we find only two: the local equilib-
rium solutions (near 7 = £1) and the interface solution.
Thus our conclusion is that the saddle point separates the
thermodynamically different states corresponding to the
(nodeless) local equilibrium solutions near n = +1, which
are degenerate. This interpretation will be strengthened
by the study of the dynamics in the next section.

B. Boundary conditions of type II

1. Perturbative analysis

These are “topological” boundary conditions that force
the order parameter to have at least one node, and clearly
there is no equivalent of the local equilibrium configura-
tion (in which the order parameter maintains the same
sign) that is available with boundary conditions I. Hence
we expect that the single-node solution of the differen-
tial equation (2.8) with boundary conditions of type II is
thus an absolute minimum of the free energy in the space
of functions with these boundary conditions. Before ana-
lyzing the solution numerically, it proves illuminating to
study the linear response as in the previous case. For suf-
ficiently large volumes an excellent approximation to the
unperturbed solution (h = 0) is 79(Z) = tanh[Z/v/2].
With this unperturbed solution we can explicitly con-
struct the functions é;(Z); 62(Z) and the response field
11 satisfying n1(—1/2) = n1(l/2) = 0 (see Appendix A).
Again because the boundary conditions are symmetric,
the coefficient oz vanishes, and we find (for { > 1)
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e‘/il
16

o & (2.19)
Perturbation theory has a vanishing domain, but an im-
portant feature is that, in contrast with the previous case,
now aj is positive. This means that in this case the per-
turbed interface lies closer to the hot end of the sample.

2. Numerical results

We have used the same numerical scheme to solve the
full nonlinear differential equation (2.8), now beginning
with n(0) = —1 and “shooting” with an initial derivative
such that n(l) = 1. Figure 1 also shows the profile for
h =1073; | = 25 (type II boundary conditions).

The profile is again easily understood in terms of the
particle rolling down the potential hill in the presence
of friction: the particle has to begin from 7(0) = —1
but with a fairly large derivative because of the friction
term. If the initial velocity is small, then the particle does
not make it up the hill to reach 7 = 1. Thus the initial
velocity is fairly large and the particle moves very rapidly
initially taking a short time to reach n = 0; hence the
interface is very close to z = 0, the hot end. Eventually
the particle climbs up the potential hill, being slowed
down not only by the potential but also by the friction.

One knows that, because of the coupling to the trans-
lation mode, the linear response must necessarily diverge
in the infinite volume limit. Here, for a large but finite
system, the position of the perturbed interface is very
close (about two to three correlation lengths) to the hot
end, far from the unperturbed value at the middle of
the system. The sign of the translation is correctly pre-
dicted by the linear response calculation as is the case for
boundary conditions of type I. However, unlike the case
of type I boundary conditions, this solution, as discussed
above, corresponds to the lowest free energy compatible
with the odd boundary conditions of type II.

III. DYNAMICS

A. Langevin equation for the collective coordinate

Below we will present the results of simulations of re-
laxational dynamics for the motion of a two phase in-
terface in a temperature gradient. Before doing so, we
derive from the trial function (2.16) the velocity of the
interface.

Relaxational dynamics for this nonconserved order pa-
rameter are specified by assuming a Langevin equation
description

op(z,7)

-0 (3.1)
or 8¢
For our present purposes we neglect a noise term and
absorb the characteristic relaxation rate into the dimen-
sionless time, 7. Assuming that there is a very small
distortion of the profile as a function of time, that is,

that the time evolution corresponds to translations of
the interface, we propose the parametrization
r(2)
o(z,7) = —=n(z — 2.(1)) .
(z,7) %) ( (7))
This parametrization leads at once to an equation for the
“collective coordinate” z.(7). For £ € z. < land h € 1
and using the trial function (2.16) we find

(3.2)

dz.
dr

The interface is predicted to move with constant speed
proportional to the gradient; in the language of solitons
the coefficient would be identified as the kink (linear)
mobility. Details are compared directly with the results
of simulations below.

= —3reh + O(h®) +--- . (3.3)

B. Numerical simulation

We follow the time evolution of the system using the
Langevin dynamics, (3.1). These dynamics drive the sys-
tem to a free energy minimum. Rescaling ¢ = ¢o¢’,
rz = zox', and T = 7ot, one can choose the constants
b0, o, To to reduce the dynamical equation to

O¢(z,t) _ ?p(z,t)

ot 5a T (L+h2)’d(z,t) — ¢°(2,1), (3.4)

where we use the same symbols for the rescaled variables
for simplicity. The only parameter remaining is A, which
corresponds, as above, to a temperature gradient, such
that temperature decreases with increasing x if h is pos-
itive.

Equation (3.4) was numerically integrated using a sim-
ple Euler discretization on a one-dimensional lattice of
100 nodes with mesh size Az = 0.1 and time step
At = 0.001. We considered separately the two types
of boundary conditions discussed above. In type I, the
order parameter ¢ was required to have zero gradient at
the boundaries by imposing reflecting boundary condi-
tions. In the second case (type II), the value of the order
parameter was fixed at the boundaries, with values corre-
sponding to a different phase at each end of the sample.
The value chosen was the equilibrium order parameter for
an isothermal system at the temperature corresponding
to that point. (This corresponds to 7 = £1 in the earlier
parametrization.) The initial conditions used were of the
form

é(z,0) = (1 + ha) tanh {‘” - ““’] , (3.5)

V2

where z is the initial position of the kink. This function
is very close to the actual values that the order parameter
takes once it enters the dynamic regime, as long as z is
not too close to the boundaries.

For the open boundary case (type I), it was observed
that the evolution of the system consists of the kink being
displaced until it disappears at one of the boundaries.
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The final state is then always a single phase in the whole
system, and at that point there is no further change in the
order parameter. This type of solution has been referred
to above as the “local equilibrium” configuration. This
is expected, since the one-phase configuration constitutes
the global minimum of the free energy, and it can be
reached with the imposed boundary conditions.

For most initial positions the kink moves towards the
higher temperature side. This is to be expected since
near the high temperature side the correlation length
is larger and the equilibrium order parameter gap is
smaller. These effects decrease the interfacial free en-
ergy so that the kink can evolve to a lower free energy
state by moving toward the hot end. However, it is inter-
esting that if the initial kink position is close enough to
the cold boundary, the kink disappears at that end. Fig-
ures 3(a) and 3(b) show the evolution of the kink when
it is started from two different positions; in all cases the
kink disappears at the boundary. This can be under-
stood by looking at the free energy of the system as a
function of the kink position z¢(t), defined as the point
where the order parameter vanishes. The free energy has
a maximum at some value of zg close to the cold end.
The larger the temperature gradient h, the closer this
maximum is to the cold end. Figure 4 shows this free
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FIG. 3. (a) Evolution of structure with initial interface
near the cold boundary showing the disappearance of the in-
terface there. (b) Dynamical evolution of an interfacial struc-
ture showing the disappearance of the interface at the hot
boundary. The value h = 0.002 was used in these figures.
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FIG. 4. Effective free energy as a function of the collec-
tive coordinate (position of the node in the order parameter
profile) showing, for comparison, the free energy for the hy-
perbolic tangent trial function. In all cases h = 0.002.

energy as a function of the kink position. It was calcu-
lated from Eq. (2.1) applied to the the order parameter
configuration as the kink evolves. For a given initial con-
dition, we can obtain only a portion of the graph as the
interface evolves toward one side. However, for different
initial conditions, the calculated free energy always falls
on the same curve, as expected.

For the case of fixed boundary conditions, i.e., type
II, the free energy has a minimum at some point close
to the higher temperature side, and therefore the kink
moves towards that point from any initial position. The
free energy for this type of boundary conditions is also
shown in Fig. 4.

Finally, also shown in Fig. 4 is the free energy calcu-
lated for configurations of the order parameter given by
the trial function (3.5) for varying xo. As can be seen, the
two curves obtained dynamically with differing boundary
conditions coincide in the region away from the bound-
aries, which shows that the dynamics of the kink will
not be affected by the boundary conditions until the kink
comes within a few correlation lengths of the boundaries.
The curve obtained from the local temperature solution
(8.5) is also very close to the others in the region away
from the boundaries.

To compare with the analytical results of Eq. (2.18),
we computed the value of dF[z¢]/dz for small values of
h, in the region far from the boundaries, which is where
the approximate analytical results are expected to hold.
The numerical and analytical results for the slope of the
effective free energy of the interfacial configuration agree
within 2%. As shown in (3.3) the velocity of the inter-
face is expected to be proportional to the gradient. Our
numerical simulations yield the coefficient within 2-3 %
of the approximate analytic result. We conclude that
as long as the system size is sufficiently large (here ten
correlation lengths is seen to be large enough), the trial
function provides a semiquantitative description of the
statics and relaxational dynamics.
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IV. CONCLUDING REMARKS

In this short paper we have considered the statics and
nonconserved relaxational dynamics of a two-phase inter-
face in which the system is subjected to a temperature
gradient. For the statics one has to extremize the free
energy; a nonlinear change of variables preserves trans-
lational invariance and yields a representation in which
the interface shape becomes equivalent to the time trajec-
tory of a ball rolling in a potential, but slowed by friction
[Eq. (2.8)].

It is seen that the temperature gradient couples to the
“translation” mode of the unperturbed (isothermal) in-
terface, so that perturbation theory can be applied to the
introduction of the temperature gradient only if the mode
is clamped by the finite size of the system. Even then the
clamping is exceptionally weak for large systems, and
the “linear response” is divergent, but correctly predicts
which side of the sample will contain the interface. In re-
alistic terms perturbation theory has vanishing domain
since the effective coupling becomes ~ hexp(l), where h
is a measure of the gradient and [ is a measure of the
system size, in units of the correlation length. Hence
full nonlinear solutions and dynamical simulations were
carried out numerically.

The equilibrium configurations are sensitive to the
boundary conditions. For type I boundary conditions
in which the order parameter derivative vanishes at the
walls, the global equilibrium is for the system to re-
main in one phase. A single-kink extremum is argued
to be a saddle point in the space of functions satisfy-
ing these boundary conditions. Simulations using relax-
ational (Langevin) dynamics reveal that an initial inter-
face travels to one of the walls and the interface disap-
pears. An interesting feature is that, generally, the in-
terface travels toward the hotter wall at approximately
constant velocity; however, if the initial interface is es-
tablished close enough to the colder wall, it is removed
there.

For “topological” boundary conditions (type II) in
which the order parameter is forced to be in two different
phases at the ends of the system, the equilibrium config-
uration has the interface near the hotter wall, which is
consistent with the behavior of the free energy.

The structure of the free energy in the space of sin-
gle kink configurations has been analyzed approximately
using trial functions which should be accurate as long
as the system size is sufficiently larger than the thermal
correlation length. Good numerical agreement is found
with purely numerical relaxational dynamics. The trial
function along with assumed relaxational dynamics yields
analytic results for the equation of motion of the interface
position (collective coordinate), also in good agreement
with purely numerical simulations.

For an order parameter with conserved (say, model
B [8]) dynamics the situation is different. A configuration
with a single interface cannot change much in response to
a temperature gradient. However, a kink-antikink pair,
representing a slab or bubble of one phase in the other,
can move significantly while respecting the conservation.

This topic is beyond the present scope and will be ex-
plored elsewhere.
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APPENDIX A: FORMAL SOLUTION OF THE
LINEAR RESPONSE

The perturbation 7; satisfies Eq. (2.13). Now, 7o is
a function of Z = z — [/2, so 7, is also a function of
this variable. As noted in the text, the function 6;(Z) =
10(Z) is an eigenfunction of the second order fluctuation
operator with eigenvalue zero. With this solution we can
construct another linearly independent solution with unit
Wronskian. Thus we find the following solutions of the
homogeneous equation:

81(2) =mo(Z) ,
zZ !
6:(2) = 61(2) [ 2

o 83(2)

(A1)

The zero mode §,(Z) is a symmetric function around
Z = 0 and vanishes (linearly) at Z = +!/2. This mo-
tivates the choice of the lower limit in (A1), since now
82(Z) is antisymmetric around Z = 0 and obviously finite
at Z = +1/2. Finally, the solution to Eq. (2.13) is

zZ
m(Z) = 36.(2) /0 d2/6:(2')55(2")

—36,(2) / % AT 8L + anbr(Z) + a2ba(Z)
(A2)

with constants a; > to be determined by the boundary
conditions. Expanding the set of type I boundary con-
ditions to linear order in h (and accounting for the ex-
plicit h dependence of the variable Z), one finds that
the boundary conditions are symmetric around Z = 0,
and since §2(Z) is antisymmetric, the coefficient a van-
ishes. (This is a bonus of the parametrization in terms
of Z and the choice of lower limit of the integrals in the
functions above.) This indicates that the position of the
interface is shifted; analyzing the behavior near Z ~ 0
yields Eq. (2.14).
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APPENDIX B: UNPERTURBED KINK

In a finite box the solution of Eq. (2.8) for h = 0 may be
found by quadratures in terms of the elliptic sine function
(11]

no0(z) = misnfujm] ,
_(,_t),/2—n
v= 2 2
2
;

where 70(0) = —n; = —no(l) gives the values at the end
points of the interval. The requirement that there is only
one node in the interval is equivalent to requiring that
the half-period of this solution be identified with I. This
requirement in turn determines the value of n; from the
relation

2 —n?
5 (B2)

K(m):é

in which K (m) is the elliptic integral of the first kind [11]
and is a quarter period of the elliptic function sn. This
solution is a function of Z = z — /2, and it obeys

10(Z)| z=—172 = 10(Z)| z=1/2 = 0.
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